Přeskočit na hlavní obsah

Retrieval-Augmented Generation (RAG) with Embedding-Based Dense Retrieval



RAG is a technique where a generative AI model (like ChatGPT) doesn’t just rely on its own training data to generate responses. Instead, it retrieves relevant information from external sources (like databases or documents) to provide more accurate and up-to-date answers.

2. Keyword-Based Retrieval

Keyword-based retrieval is the traditional method used to find relevant information. Here’s how it works:

  • Keywords Extraction: The system looks for specific words or phrases (keywords) that match the user’s query.
  • Matching: It searches the external documents for those exact keywords.
  • Retrieval: Documents containing those keywords are retrieved and used to generate the response.

Example:

  • User Query: "Best restaurants in New York"
  • Keywords Extracted: "best," "restaurants," "New York"
  • Process: The system finds documents that contain these words to provide a list of top restaurants in NYC.

Pros:

  • Simple and fast.
  • Easy to implement.

Cons:

  • Doesn’t understand the context or meaning behind the words.
  • Can miss relevant information if different words are used.
  • Less effective with complex queries.

3. Embedding-Based Dense Retrieval

Embedding-based dense retrieval uses advanced techniques to understand the meaning and context of the query and documents. Here’s how it works:

  • Embeddings Creation: Both the user’s query and the documents are converted into high-dimensional vectors (embeddings) that capture their meanings.
  • Semantic Matching: Instead of just matching exact words, the system compares these vectors to find documents that are semantically similar to the query.
  • Retrieval: The most relevant documents based on this semantic similarity are retrieved.

Example:

  • User Query: "Top eateries in NYC"
  • Embedding Process: The system understands that "eateries" is similar to "restaurants" and "NYC" is the same as "New York City."
  • Process: It retrieves documents related to the best places to eat in New York City, even if they use different wording.

Pros:

  • Understands context and meaning, not just exact words.
  • Finds more relevant information, even with different phrasing.
  • Better handles complex and nuanced queries.

Cons:

  • More computationally intensive.
  • Requires sophisticated models to create and compare embeddings.

4. Why the Shift from Keyword-Based to Embedding-Based?

  • Improved Accuracy: Embedding-based retrieval provides more relevant and contextually accurate results.
  • Better User Experience: Users get answers that better match their intent, even if they phrase things differently.
  • Handling Complexity: It’s more effective for complex queries that involve understanding relationships and meanings beyond simple keywords.

In Summary

  • Keyword-Based Retrieval: Looks for exact word matches. Simple but can miss the bigger picture.
  • Embedding-Based Dense Retrieval: Understands the meaning and context, finding relevant information even with different wording. More powerful but requires advanced technology.

In the realm of GenAI RAG, moving from keyword-based to embedding-based dense retrieval means AI models can provide more accurate, relevant, and context-aware responses by better understanding and retrieving the information that truly matches the user's intent.

Komentáře

Populární příspěvky z tohoto blogu

Za hranice DevOps 1.0: Proč je BizDevOps pro SaaS společnosti nezbytností?

Přechod od tradičního DevOps k BizDevOps představuje zásadní tektonický zlom ve filozofii, která pečlivě integruje hluboké pochopení potřeb zákazníka s agilitou vývoje softwarových služeb a jejich provozu. Je to revoluce, která je stejně kontroverzní jako stěžejní a dramaticky rozšiřuje základy toho, co dnes běžně chápeme jako efektivní dodávku softwaru. Jádrem našeho článku je zásadní otázka: Mohou organizace, které jsou zakořeněné v ustáleném rytmu DevOps 1.0, přijmout rozsáhlé organizační, technologické a názorové změny potřebné pro BizDevOps?  Tunelové vidění technologických specialistů Ve světě softwaru-jako-služby (SaaS) stojí mladý DevOps specialista Luboš na kritické křižovatce. Vyzbrojen skvělými dovednostmi v oblasti kódování a rozsáhlými znalostmi cloudových architektur se Luboš s jistotou a lehkostí orientoval v technických aspektech své profese. Jak se však před ním rozprostřela krajina SaaS plná nesčetných výzev a komplikací, Luboš se potýkal s problémy, které nebylo ...

Integrating HATEOAS, JSON-LD, and HAL in a Web-Scale RAG System

  The intersection of Hypermedia as the Engine of Application State (HATEOAS), JSON for Linked Data (JSON-LD), and Hypertext Application Language (HAL) presents a novel approach to enhancing Retrieval-Augmented Generation (RAG) systems. By leveraging these standards, we can streamline and potentially standardize the interaction of Large Language Models (LLMs) with knowledge graphs, thus facilitating real-time data retrieval and more effective training processes. Leveraging HATEOAS HATEOAS principles are crucial for enabling dynamic navigation and state transitions within RESTful APIs. In the context of RAG systems, HATEOAS allows LLMs to interact with APIs in a flexible manner, discovering related resources and actions dynamically. This capability is essential for traversing knowledge graphs, where the relationships between entities can be complex and varied. By providing hypermedia links in API responses, HATEOAS ensures that LLMs can effectively navigate and utilize the knowledge...

The OpenAI Dilemma: A Business Model That Can't Scale

Right now, OpenAI dominates the GenAI conversation much like Apple did in the early days of the Mac and iPhone—an exclusive, high-cost, high-curation model with strict control over its product lifecycle. This approach works brilliantly in the short term, creating the illusion of scarcity-driven value and a premium user experience. But in the long run, the cracks in this model start to show. Let’s look at three fundamental weaknesses of OpenAI’s current trajectory: 1. A Structural Bottleneck: Over-Reliance on Search and Static Training OpenAI's most urgent problem is its full dependence on internet search to provide users with up-to-date knowledge. At first glance, this might seem like an advantage—it makes ChatGPT appear "live" and relevant. But in reality, it's a massive strategic liability for several reasons: Search is an external dependency – OpenAI doesn’t own the sources it retrieves from (Google, Bing, or specialized databases). It relies on external...