Přeskočit na hlavní obsah

Mapping SCRUM Steps to GitHub Features

 


Using GitHub, a SCRUM team can effectively manage their entire development cycle. Below is a mapping of the SCRUM steps to GitHub features:

Pre-Sprint Planning

  1. Product Backlog Refinement
    • GitHub Features:
      • Issues: Create and manage Product Backlog items as GitHub Issues.
      • Labels: Use labels to categorize and prioritize issues (e.g., "high priority", "enhancement").
      • Milestones: Group related issues into milestones representing larger features or epic stories.
      • Projects: Use GitHub Projects (kanban boards) to organize issues into columns such as "To Do", "In Progress", and "Done".

Sprint Cycle

  1. Sprint Planning

    • GitHub Features:
      • Issues: Select issues from the Product Backlog for the Sprint.
      • Projects: Move selected issues to the "In Progress" column in the GitHub Project board for the current Sprint.
      • Milestones: Assign issues to the Sprint milestone to track progress and deadlines.
      • Issue Templates: Use issue templates to ensure that each user story or task has the necessary information.
  2. Daily Standup (Daily Scrum)

    • GitHub Features:
      • Projects: Use the GitHub Project board to update the status of tasks.
      • Issues: Comment on issues to provide daily updates on progress and impediments.
      • Discussions: Utilize GitHub Discussions for more detailed conversations about blockers or important topics.
  3. Development Work

    • GitHub Features:
      • Branches: Create branches for each user story or task to manage development work.
      • Pull Requests (PRs): Use PRs to merge completed work back into the main codebase. PRs can be linked to issues for tracking.
      • Actions: Use GitHub Actions for continuous integration and continuous deployment (CI/CD) to automate testing and deployment.
  4. Backlog Refinement (Mid-Sprint)

    • GitHub Features:
      • Issues: Review and update issues in the Product Backlog.
      • Labels: Adjust labels to reflect new priorities or clarifications.
      • Projects: Update the Project board as necessary to reflect changes in priorities or task status.

Sprint End

  1. Sprint Review

    • GitHub Features:
      • Pull Requests: Review merged PRs to demonstrate the completed work.
      • Wiki: Document the results of the Sprint and share with stakeholders.
      • Discussions: Use GitHub Discussions to gather feedback from stakeholders.
  2. Sprint Retrospective

    • GitHub Features:
      • Discussions: Create discussion threads for the team to reflect on the Sprint and identify improvements.
      • Issues: Create new issues for actionable improvement items identified during the retrospective.
      • Projects: Use a separate Project board for tracking improvements and actions from retrospectives.

Post-Sprint

  1. Product Backlog Update
    • GitHub Features:
      • Issues: Update and prioritize issues in the Product Backlog based on feedback and new insights.
      • Milestones: Adjust milestones to reflect new priorities and deadlines.
      • Projects: Update the Project board to reflect the current state of the Product Backlog.

Visual Representation of the GitHub SCRUM Workflow

  1. Product Backlog Refinement (Continuous)
    • GitHub Features: Issues, Labels, Milestones, Projects
  2. Sprint Planning (Day 1)
    • GitHub Features: Issues, Projects, Milestones, Issue Templates
  3. Daily Standups (Daily)
    • GitHub Features: Projects, Issues, Discussions
  4. Development Work (Ongoing throughout the Sprint)
    • GitHub Features: Branches, Pull Requests, Actions
  5. Backlog Refinement (As needed)
    • GitHub Features: Issues, Labels, Projects
  6. Sprint Review (End of Sprint)
    • GitHub Features: Pull Requests, Wiki, Discussions
  7. Sprint Retrospective (End of Sprint, post-Review)
    • GitHub Features: Discussions, Issues, Projects
  8. Product Backlog Update (Immediately post-Sprint)
    • GitHub Features: Issues, Milestones, Projects

By utilizing these GitHub features, a SCRUM team can effectively manage their workflow and ensure alignment with SCRUM practices, all within the GitHub ecosystem.

Komentáře

Populární příspěvky z tohoto blogu

Za hranice DevOps 1.0: Proč je BizDevOps pro SaaS společnosti nezbytností?

Přechod od tradičního DevOps k BizDevOps představuje zásadní tektonický zlom ve filozofii, která pečlivě integruje hluboké pochopení potřeb zákazníka s agilitou vývoje softwarových služeb a jejich provozu. Je to revoluce, která je stejně kontroverzní jako stěžejní a dramaticky rozšiřuje základy toho, co dnes běžně chápeme jako efektivní dodávku softwaru. Jádrem našeho článku je zásadní otázka: Mohou organizace, které jsou zakořeněné v ustáleném rytmu DevOps 1.0, přijmout rozsáhlé organizační, technologické a názorové změny potřebné pro BizDevOps?  Tunelové vidění technologických specialistů Ve světě softwaru-jako-služby (SaaS) stojí mladý DevOps specialista Luboš na kritické křižovatce. Vyzbrojen skvělými dovednostmi v oblasti kódování a rozsáhlými znalostmi cloudových architektur se Luboš s jistotou a lehkostí orientoval v technických aspektech své profese. Jak se však před ním rozprostřela krajina SaaS plná nesčetných výzev a komplikací, Luboš se potýkal s problémy, které nebylo ...

Integrating HATEOAS, JSON-LD, and HAL in a Web-Scale RAG System

  The intersection of Hypermedia as the Engine of Application State (HATEOAS), JSON for Linked Data (JSON-LD), and Hypertext Application Language (HAL) presents a novel approach to enhancing Retrieval-Augmented Generation (RAG) systems. By leveraging these standards, we can streamline and potentially standardize the interaction of Large Language Models (LLMs) with knowledge graphs, thus facilitating real-time data retrieval and more effective training processes. Leveraging HATEOAS HATEOAS principles are crucial for enabling dynamic navigation and state transitions within RESTful APIs. In the context of RAG systems, HATEOAS allows LLMs to interact with APIs in a flexible manner, discovering related resources and actions dynamically. This capability is essential for traversing knowledge graphs, where the relationships between entities can be complex and varied. By providing hypermedia links in API responses, HATEOAS ensures that LLMs can effectively navigate and utilize the knowledge...

Retrieval-Augmented Generation (RAG) with Embedding-Based Dense Retrieval

RAG is a technique where a generative AI model (like ChatGPT) doesn’t just rely on its own training data to generate responses. Instead, it retrieves relevant information from external sources (like databases or documents) to provide more accurate and up-to-date answers. 2. Keyword-Based Retrieval Keyword-based retrieval is the traditional method used to find relevant information. Here’s how it works: Keywords Extraction: The system looks for specific words or phrases (keywords) that match the user’s query. Matching: It searches the external documents for those exact keywords. Retrieval: Documents containing those keywords are retrieved and used to generate the response. Example: User Query: "Best restaurants in New York" Keywords Extracted: "best," "restaurants," "New York" Process: The system finds documents that contain these words to provide a list of top restaurants in NYC. Pros: Simple and fast. Easy to implement. ...